THÉORÈME DE DOOB (N2)

(03 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

Il existe plusieurs théorèmes attribués à J.L. DOOB (cf théorème d'arrêt, théorème de convergence pour des martingales). Le suivant caractérise les martingales.

Soit $X = (X_t)_{t \in T}$ un **processus stochastique** réel scalaire qui est une (semi-)martingale à valeurs dans $\mathcal{L} = \mathbf{R}$.

Le théorème de J.L. DOOB exprime que :

- (a) la fonction $t: \mapsto \mu$ (t) = E X_t est monotone et non décroissante. Elle est constante ssi X est une martingale ;
 - (b) pour tout (a, b) $\in T^2 = \{(s, t) \in T^2 : s \le t\}$, on a :
- (1) $E X_a + E |X_t| \le 2 \cdot E X_b$, $\forall t \in [a, b]$;
- (c) soit $t^* \in T$. Si X est une **famille** de variables positives (ie si $\mathcal{X} = \mathbf{R}_+$), la sous-famille $(X_t)_{t \le t^*}$ est uniformément intégrable ;
- (d) soit $s=(s_n)_{n\in \textbf{N}}$ une **suite** sur T tq $s\in T_{\geq}^{\infty}$, avec $T_{\geq}^{\infty}=\{s=(s_n)_{n\in \textbf{N}}\in T^{\infty}: s_n\geq s_{n=1}\ ,\ \forall\ n\in \textbf{N}\}.$ La suite extraite $(X_{s(n)})_{n\in \textbf{N}}$ est une **suite uniformément intégrable** ssi :
- (2) $\lim_{n \to +\infty} E X_{s(n)} > -\infty$.

où s(n) désigne aussi bien s_n.