THÉORÈME DE FUBINI (A5)

(04 / 11 / 2020, © Monfort, Dicostat2005, 2005-2020)

Le **théorème de FUBINI** est un théorème classique de la **théorie de l'intégration**, qui précise les conditions sous lesquelles on peut intervertir deux **intégrations** successives.

(i) Soit (E, \mathcal{A} , μ) et (F, \mathcal{B} , ν) deux **espaces mesurés** tq μ (resp ν) est une **mesure** σ -finie sur \mathcal{A} (resp \mathcal{B}). Soit $f: E \times F \mapsto \mathbf{R}$ (ou \mathbf{C}) une fonction ($\mu \otimes \nu$)-intégrable dont on note $f_1: x \mapsto f_1(x) = f(x, y)$ la première application partielle et $f_2: y \mapsto f_2(y) = f(x, y)$ la seconde application partielle.

On établit alors les résultats suivants, appelés théorème de G. FUBINI :

- (a) f₁ est μ-intégrable ν-p.p.;
- (b) f₂ est ν-intégrable μ-p.p.;
- (c) la fonction $x \mapsto \int f_2 d\mu$ (définie μ -p.p.) est μ intégrable, et la fonction $y \mapsto \int f_1 dv$ (définie v-p.p.) est v-intégrable ;
 - (d) formule(s) de G. FUBINI :

$$(1)_{a} \int f(x, y) d(\mu \otimes \nu)(x, y) = \int \{ \int f_{2}(y) d\nu(y) \} d\mu(x) = \int \{ \int f_{1}(x) d\mu(x) \} d\nu(y),$$

ou, de façon équivalente :

$$(1)_b \int f d(\mu \otimes \nu) = \int \{ \int f_2 d\nu \} d\mu = \int \{ \int f_1 d\mu \} d\nu.$$

(ii) Le théorème précédent se généralise directement au cas de plusieurs espaces mesurés (E_i , \mathcal{A}_i , μ_i)_{i=1,...,n} dont les mesures μ_i sont supposées σ -finies.

Si la fonction $f : E \mapsto \mathbf{R}$ (ou \mathbf{C}) est intégrable pr à la mesure $\bigotimes_{i=1}^n \mu_i$, avec $E = \prod_{i=1}^n E_i$ et $\mathscr{A} = \bigotimes_{i=1}^n \mathscr{A}_i$, alors :

- (a) les applications partielles $f_i = f(x_1, ..., x_{i-1}, ..., x_{i+1}, ..., x_n) : x_i \mapsto \mathbf{R}$ (ou **C**), définies sur E_i et à valeurs dans **R** (ou **C**) sont μ_i -intégrables, pour tout i = 1, ..., n;
- (b) les fonctions $(x_1,...,x_{i-1},...,x_n)\mapsto \int f_i\ d\mu_i\ (x_i)$ sont μ_i -intégrables et définies $(\bigotimes_{j=1}^n (j\neq i)\ \mu_j)$ -presque partout ;

1

(c) formule(s) de FUBINI généralisée(s) :

(2)
$$\int f d\mu = \int \{ \int f_i (\bigotimes_{j=1}^n f_{(j \neq i)} \mu_j) \} d\mu_i$$
.

- (iii) Les formules s'étendent aussi directement aux cas :
 - (a) d'une fonction f vectorielle (à valeurs dans \mathbf{R}^k ou dans \mathbf{C}^k);
 - (b) d'une fonction matricielle (à valeurs dans M_{qr} (**R**) ou dans M_{qr} (**C**)).