TRIBU EXHAUSTIVE (G2, G5)

(04 / 11 / 2019, © Monfort, Dicostat2005, 2005-2019)

(i) Soit (Ω, \mathcal{F}, P) un **modèle statistique** dont la **famille** \mathscr{L} est paramétrée par un ensemble $\Theta, \mathscr{L} = (P_{\theta})_{\theta \in \Theta}$, et \mathscr{S} une sous-tribu de \mathscr{F} .

On dit que S est une **sous-tribu exhaustive** pour le « **paramètre** » θ ssi l'une des deux conditions suivantes est réalisée :

- (a) pour tout $A \in \mathcal{T}$, il existe une détermination de la **probabilité** conditionnelle $P_{\theta}^{\mathcal{S}}(A) = E_{\theta}(\mathbf{1}_A / \mathcal{S})$ (espérance conditionnelle de l'indicatrice de A pr à \mathcal{S}) qui est indépendante de $\theta \in \Theta$;
- (b) pour toute **statistique** réelle scalaire $S: \Omega \mapsto \mathbf{R}_+$ (resp $S \in \mathscr{L}_{\mathbf{R}}^1$ (Ω, \mathscr{T}, P)), il existe une détermination de l'espérance conditionnelle E_θ (S / \mathscr{S}) qui est indépendante de $\theta \in \Theta$. On note ici E_θ (S / \mathscr{S}) l'espérance conditionnelle de S relativement à \mathscr{S} , calculée à l'aide de la mesure de probabilité P_θ .
- (ii) Si Q est une **probabilité privilégiée**, on montre que $\mathcal S$ est exhaustive ssi le **critère d'exhaustivité** (**pour une sous-tribu**) suivant est vérifié : pour tout $\theta \in \Theta$, il existe une détermination de la **densité** dP_{θ} / dQ qui est $\mathcal S$ -mesurable.