VARIABLE BOCHNER - INTÉGRABLE (A5, C1, N12)

(05 / 12 / 2020, © Monfort, Dicostat2005, 2005-2020)

(i) Soit (Ω, \mathcal{F}, P) un espace probabilisé, $(\mathcal{X}, \mathcal{B})$ un espace de BANACH réel (muni de sa tribu borélienne \mathcal{B}) et $\xi : \Omega \mapsto \mathcal{X}$ une application donnée.

On dit que ξ est une variable aléatoire au sens de A. BECK ssi :

- (a) ξ est une application (\mathcal{T} , \mathcal{B})-mesurable;
- (b) il existe un sous-espace séparable ${\mathcal Z}$ de ${\mathcal X}$ tq :
- (1) $\xi(\Omega) \subset \mathcal{Z}$.
- (ii) On dit alors que ξ est une variable (aléatoire) intégrable au sens de S. BOCHNER, ou une variable BOCHNER-intégrable, ou encore une variable fortement intégrable (voire simplement une variable intégrable), pr à P ssi sa norme est P-intégrable, ie ssi :
- (2) $\int ||\xi|| dP = \int_{\Omega} ||\xi(\omega)|| dP(\omega) < \infty.$

La fonctionnelle $\xi \mapsto \int ||\xi|| \, dP$ définie à partir de (2) est alors appelée **intégrale de S. BOCHNER**.

On note $L_{\mathcal{X}}$ (Ω , \mathcal{T} , P) l'espace des (classes de) variables aléatoires BOCHNER-intégrables.

(iii) On montre que, si ξ est BOCHNER-intégrable, alors elle est PETTIS-intégrable (cf intégrale de PETTIS, variable PETTIS-intégrable).